

Durability of Thermal Energy Meters

Philip Holoch

EN 1434-1:2022

3.24 durability

characteristic of a measuring instrument to keep the metrological characteristics over time (e.g. to fulfil the double of MPE), provided that it is properly installed, maintained and used within the permissible environmental conditions

∩y

in Gu

Every year more the meters are being rep

Ca. 90% are being disposed

15 years of guaranteed operation! 15 years of correct measurement! No recalibration necessary! No replacement necessary!

Is that possible?

Long Durability is Possible

Influencing Factors on the Durability of a Meter

Operation

Production

Operation

Today's Type Approval Durability Test (EN1434-4)

- Basic test
 - 100 days
 - Varying flows
 - At maximum specified temperature (e.g. 120°C)
- Accelerated test
 - 4000 temperature cycles = 5 years
 - 8000 temperature cycles = 10 years
 - 15...20°C / 80...85°C
- High temperature test
 - 10 cycles à 24h
 - 22h at max. temperature (e.g. 120°C) / 2h at ambient temperature

Drawbacks in Today's Approvals

Application requirements are not reflected

- Approval tests with only 5 samples
 - No statistical data to predict durability

- Just increasing the number of cycles or samples is not enough
 - Only parts in contact with the liquid are tested on durability
 - Other failures could occur, if the weak components are improved \rightarrow e.g. electronics and battery are not covered in durability tests

Useful

Life

Time

Legal Recalibration Periods without Foundation

Country	Recalibration period heat meters	Recalibration period district heat meters
Austria	-	5 years
Belgium	8 years	-
Bulgaria	2/5 years	2 years
Croatia	-	3 years
Czech Republic	-	4 years
Denmark	-	6 years
Estonia	-	2 years
Germany	8 years	6 years
Hungary	-	6 years
Poland	5/10 years	4 years
Romania	4 years	4 years
Sweden	-	5/10 years
France, BH, Cyprus, Greece, Ireland, Italy, Malta, Montenegro, Portugal, Spain, Turkey, UK	-	-

Source: heat meter accuracy testing, David Butler/Alan Abela, Chris Martin, UK Department for Business, Energy & Industrial Strategy, November 2016,

"Heat_Meter_Accuracy_Testing_Final_Report_16_Jun_incAnxG_for_publication.pdf"

- Risk based approach to improve quality and durability on component level
- Create statistical data to predict durability

Where do we need to improve? → Recalibration Periods

Recalibration periods should be founded on

- designed and statistically proven durability
- health state of the meter
- stress level of the meter

Product Design

TITI

Product Design

Requirements

System Concept → Split into Components

Requirements to components

- Define functionalities of components
- Do a risk assessment (e.g. FMEA = Failure Mode and Effects Analysis)
 - Identify failure modes

Detail design Implementation

- Implement measures against risks
 - \rightarrow Detect weak spots
 - → Avoid failures

Integration, Test and Verification (Component Level)

- Calculations (e.g. tolerances)
- Simulations
- MTTF investigations

BELIMO

Source: Institute of Quality and Reliability

Integration, Test and Verification (Component Level)

- Tests
 - Sealing tests
 - Environmental tests (climate
 - Aging tests
 - Contamination tests
 - EMC tests

• ...

verify on component level !

- Tests are easier and faster
- Tests are more focused to the failure mode
- Tests can be done in higher numbers to gain statistical information

20

System verification → Tests on System Level

TIRA vib

Operation & Recalibration

Recalibration period based on predicted durability

Statistically proven during approval process

Recalibration period depending on health state

BELIMO Geräte	
Status	
📀 ок	8 Geräte
🔺 Warnung	Keine Geräte
A Fehler	Keine Geräte
(?) Unbekannt	Keine Geräte
Geräte	
<u>Gerät</u>	Seriennummer \$
Frischwasserstation	22141-40022-034-186
Haus 10 Caprez / Holoch	22206-50024-034-182
Haus 10 DG Holoch	22212-00035-034-182

- Supervision of the installed meters
 - Within the meter itself
 - zero flow at known operating points
 - amplitude of ultrasonic signal
 - ...

. . .

- Remote through available communication technologies
- comparison of operating points over time
- comparison with meters in same system
- comparison with meters from same batch

Third party application

Recalibration period depending on stress level

 Compare operational data with meter specification to judge stress level

Protection class IEC/EN	III, Protective Extra-Low Voltage (PELV)
Degree of protection IEC/EN	IP54
	Logic module: IP54 (with grommet A-22PEM-
	A04)
	Sensor module: IP65
Pressure equipment directive	CE according to 2014/68/EU
EMC	CE according to 2014/30/EU
Certification IEC/EN	IEC/EN 60730-1:11 and IEC/EN 60730-2-15:10
Quality Standard	ISO 9001
Type of action	Type 1
Rated impulse voltage supply	0.8 kV
Pollution degree	3
Ambient humidity	Max. 95% RH, non-condensing
Ambient temperature	-3055°C [-22130°F]
Fluid temperature	-20120°C [-5250°F]
	At a fluid temperature of < 2°C [< 36°F], frost
	protection must be guaranteed
Storage temperature	-4080°C [-40176°F]

Saf

Conclusion

Why do we strive for longer durability?

What do we have to change in the approval process to get a predicted durability?

Do a risk assessment to focus on weaknesses
→ D-FMEA needs to become part of the approval
→ Measures from risk analysis need to become part of the approval

Tests on component level generate statistical data to predict durability

 \rightarrow The approval is less standardized but more focused on the design of the specific product

How can we extend recalibration periods to reduce waste?

- Consider the designed and statistically proven durability
- Extend recalibration periods through supervision of the devices
 - Considering the health state of the meter
 - Considering the stress level of the meter

philip.holoch@belimo.ch