Model for the aging of temperature sensors under cyclic temperature loads for statements on durability above 10 years

20. September 2023 | Seeon

EMATEM

European Metrology Association for Thermal Energy Measurement

Dr. Ivan Jursic

Global Development - Research & Test Measures and Measuring Methods

Long term goals

- Determine factors affecting durability of temperature probes

- Build a model to calculate expected lifetime

- Develop accelerated test

What is already known in the literature

- Standards from other fields
- Several approaches to accelerated testing
- DIN EN 60216 "Electrical insulating materials – Thermal endurance properties"

Temperature / °C

Standards

- DIN EN 61709, IEC 61709:2011
- Tools for lifetime analysis of a device by lifetime analysis of components
- Definition of failure:

The end of the capability to fulfil its required function.

- One possible interpretation for heat metering of required function:

Thermometer pair is within 1 MPE

DIN EN 61709

- Lifetime for whole device can be calculated from the individual components

$$\lambda_{component} = \sum_{i=1}^{n} (\lambda_{mode})_i$$

- General models are not available. Fit to actual failure rates with known stressors:

$$\lambda = \lambda_{ref} \cdot \pi_U \cdot \pi_I \cdot \pi_T \cdot \pi_E \cdot \pi_S \cdot \pi_{ES}$$

Failure mechanisms are modelled, e.g.:
Voltage, current, temperature, environment, duty cycle, electrical stress

DIN EN 61709

- Real life applications are not binary in stress
- Example from standard:

Stress profile for heat meters?

- We have no access to data from the field
- Estimations based on open source material, e.g.:

Stress profile for heat meters?

- Mean outdoor temperatures comparison (source: <u>www.klimatabelle.de</u>) :

	Germany Frankfurt(Main)		Sweden Lulea	
Month	Outside temperature / °C	Inlet temperature / °C	Outside temperature / °C	Inlet temperature / °C
January	-2	108	-15	130
February	-1	107	-15	130
March	2	102	-10	123
April	6	95	-3	110
May	9	88	2	101
June	13	83	9	80
July	15	79	11	85
August	14	80	10	87
September	11	86	4	98
October	7	93	0	105
November	3	99	-6	116
December	0	105	-12	126

Temperature / °C	Germany Frankfurt(Main)	Sweden Lulea	China Harbin
130	0 %	33 %	42 %
120	0 %	17 %	0 %
110	33 %	17 %	17 %
100	25 %	8 %	8 %
90	33 %	25 %	8 %
80	8 %	0 %	25 %
70	0%	0 %	0 %

- There is no general stress profile
- Topic for standardisation: Definition of a standard profile

What we tested

- JUMO temperature probes (902428/50)
- SMD Pt500

- Test procedure similar to EN 1434-4:2023 (7.8.3)
 - Cyclic temperature stress (*low temperature (LT*))
 - Cyclic temperature stress (Max. temperature)

How we tested: Equipment

How we tested: Equipment

- Weiss Type vötschoven Lab 60 premium
- Temperature range RT+10 °C to 300 °C
- Temperature homogeneity ± 1 %
- Temperature stability ± 0.1 K

- Typical behaviour of temperature sensors (bare SMD chip): Exponential
- Typical behaviour for ageing in other fields is most likely either exponential (Arrhenius behaviour) or Weibull

$$\pi_{\mathsf{T}} = \exp\left[\frac{E_{\mathsf{a}1}}{k_0}\left(\frac{1}{T_{\mathsf{ref}}} - \frac{1}{T_{\mathsf{op}}}\right)\right] \qquad \qquad f(x;\lambda,\beta) = \begin{cases} \frac{\beta}{\lambda}\left(\frac{x}{\lambda}\right)^{\beta-1}e^{-\left(\frac{x}{\lambda}\right)^{\beta}}, x \ge 0\\ 0 & , x < 0 \end{cases}$$

DIN EN 67109

Expected ageing

- Test for T_{max} and ΔT

No.	T _{min} / °C	T _{max} / °C
1	10	85
2	10	105
3	10	140
4	30	105

- Exponential behaviour expected. Measurements after 10, 100, 1000, 4000 and 10000 cycles
- After that a test with high temperature (150 °C): 22h T_{max}, 2h RT

Results: Temperature measuremet at 10 °C JUM

Results: Resistance at 0 °C

Group 3 has clearest indication for double exponential behaviour

Effect size small

Model with *one* exponential curve is not valid

Fit for double exponential model doesn't converge

Results: Normalisation

Median values taken

Normalised to 0 cycles

There is a general trend observable

Results: A value

- $R(T) = R_0 \cdot (1 + AT + BT^2)$

Multiple ageing effects can be observed

Pre-stages for failure at 10k cycles for high temperature stress can be observed

Results: Comparison of A values

Short term ageing can be distinguished from long term

Comparison of 0 cycles and 4k cycles measurement doesn't reveal ageing

Group 5 has no LT cycle stress

0 cycles for group 1-4 is the last measurement for LT cycles

Group 3 has signs of catastrophic failure

Other groups age

Group 3 has signs of catastrophic failure and it is getting worse

Other groups remain ok

Pairs with ok sensor remain within 1 MPE ($\Delta \Theta_{min} = 3K$)

- The expected exponential behaviour was not verified
- Double exponential behaviour is more difficult to model
- A value is an indicator for stress (ageing of individual components)
- Good thermometers remain pairs within 1 MPE

- Reproducibility needs to be checked
- This was one type of thermometer \rightarrow Other types will be tested
- Work on a model with competing exponential behaviour

I look forward to your feedback!

Dr. Ivan Jursic

Global Development - Research & Test Measures and Measuring Methods

JUMO GmbH & Co. KG Moritz-Juchheim Straße 1 36039 Fulda https://www.jumo.de

Contact us

Daniel Bott Market Segment Manager +49 661 6003 9303 Daniel.Bott@jumo.net

Tobias Firle Techn. & Strat. Product Manager +49 661 6003 9396 Tobias.Firle@jumo.net

