

for Thermal Energy Measurement

# Evaluating the flow disturbance test in EN 1434 A comparative study







## Entwicklung der Störkörper in der EN 1434



Drallgenerator nach EN 1434:2016 [1], ISO 4064 [2] / OIML R 49 [3]

erzeugt symmetrische Drallkomponente

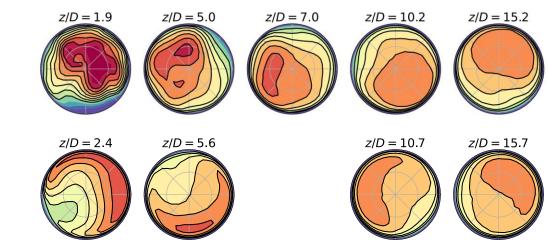


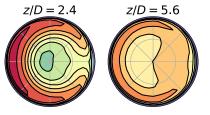
#### Asymmetrischer Drallgenerator (ASG) nach Tawackolian [5]

- Erzeugt Drall + reproduzierbare Asymmetrie
- Nachweisliche Darstellung des Raumkrümmers (RK) ab ~15 D

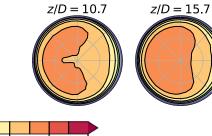


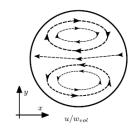
Neuer Störkörper der EN 1434:2022 [9] nach Straka et al. [10]


- Vergrößerung der Blende -> Erhöhung Drall & Asymmetrie
- Darstellung des Raumkrümmers ab ~5 D (Strömungsanalyse)
- Erhebliche Verbesserung im Vergleich zum Drallgenerator


# Vergleich der Strömungsprofile

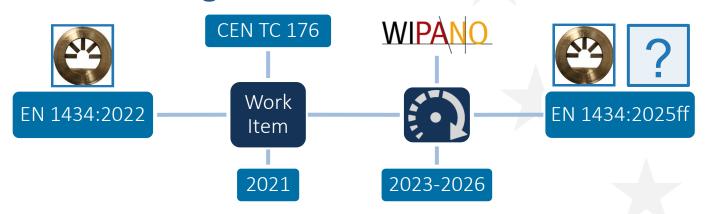










 $w/w_{vol}$ 





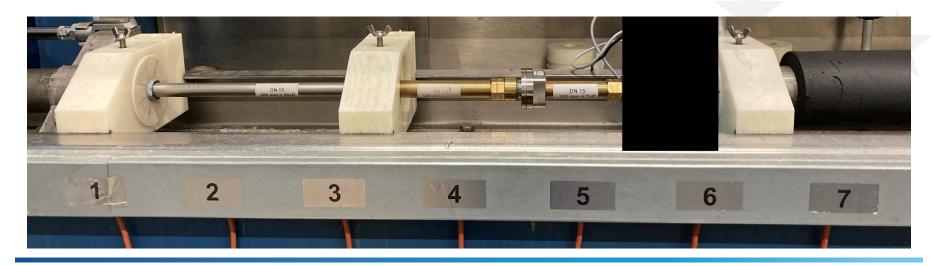
0.9

## Projektvorstellung



- WIPANO (BMWE) Wissens- und Technologietransfer durch Patente und Normen
- Work item: Flow profiles in water and water glycol solution networks, e.g. 90° bend and double bend out of plane
- Laufzeit: September 2023 April 2026
- Projektpartner: Physikalisch-Technische Bundesanstalt (PTB), Wärmezähler-Service-GmbH (WSG)
- Zielstellung
  - Messtechnische Validierung der Zulassung ohne Einlaufstrecke ("OD-Zulassung") im Durchflusstest der EN 1434
  - Entwicklung eines Störkörpers zur Darstellung des Nahfeldbereichs hinter Krümmer-Konfigurationen
  - Ggf. Erweiterung des Durchflusstests um neuen Störkörper









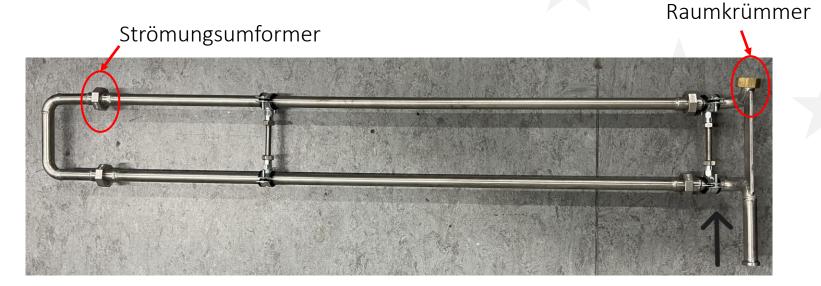

## Wärmezähleruntersuchungen

- Durchführung an einem Prüfstand der WSG
- 14 Wärmemengenzähler
- Einbausituationen: ungestört, ASG (0D & 7D), 90°- und Raumkrümmer (0D & 5D)



#### Zählerauswahl

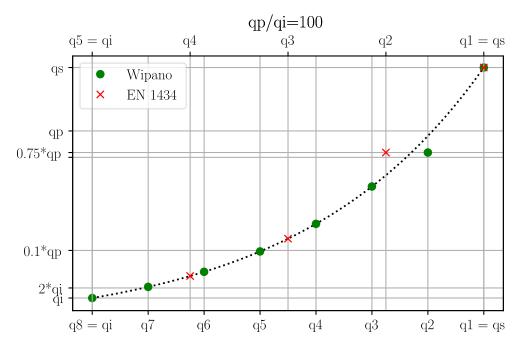
Hersteller


Belimo, Diehl, Ista, Itron, Kamstrup, Landis+Gyr, Qundis, Sensus, Zenner

| Bauarten      | DN            | $q_p$          | МВ              | Gen.<br>Klassen | Prüfarten                             |
|---------------|---------------|----------------|-----------------|-----------------|---------------------------------------|
| 11 x US       | 8 x <b>15</b> | 2 x <b>0,6</b> | 11 × <b>100</b> | 11 x <b>2</b>   | 9 x <b>NOWA</b>                       |
| $1 \times MK$ | 6 x <b>25</b> | 6 x <b>1,5</b> | 1 x 50          | 3 x <b>3</b>    | 2 x Impulse                           |
| 2 x <b>ES</b> |               | 3 x <b>3,5</b> | 2 x <b>25</b>   |                 | 3 x <b>Display</b> (steh.<br>St./St.) |
|               |               | 3 x <b>6,0</b> |                 |                 |                                       |



#### Krümmereinbau


Einlaufstrecke vor 90°-/Raumkrümmer: 65D (DN15) bzw. 40D (DN25) nach Strömungsumformer



## Messpunkte

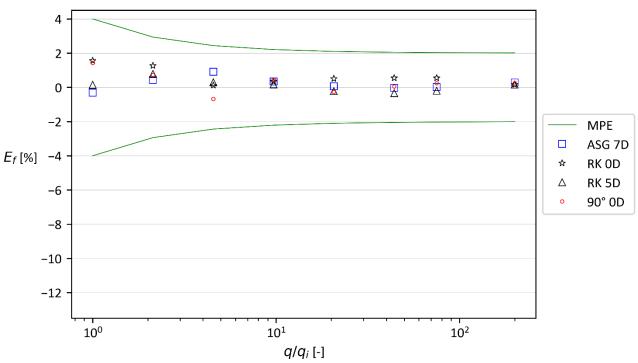


| Messpunkt         | $q_p/q_i$ |        |        |  |  |  |  |  |  |  |
|-------------------|-----------|--------|--------|--|--|--|--|--|--|--|
| iviesspulikt      | 25        | 50     | 100    |  |  |  |  |  |  |  |
| q8=q <sub>i</sub> | 1         | 1      | 1      |  |  |  |  |  |  |  |
| q7                | 1.749     | 1.931  | 2.132  |  |  |  |  |  |  |  |
| q6                | 3.058     | 3.728  | 4.544  |  |  |  |  |  |  |  |
| q5                | 5.347     | 7.197  | 9.686  |  |  |  |  |  |  |  |
| q4                | 9.351     | 13.895 | 20.648 |  |  |  |  |  |  |  |
| q3                | 16.351    | 26.827 | 44.014 |  |  |  |  |  |  |  |
| q2                | 18.750    | 37.5   | 75     |  |  |  |  |  |  |  |
| q1=q <sub>s</sub> | 50        | 100    | 200    |  |  |  |  |  |  |  |





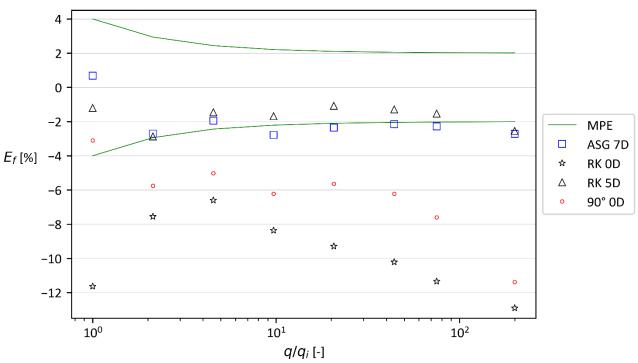
# Prüfprogramm


| Zähler                      | А     | В | С | D    | E            | F | G | Н | 1             | J | К | L             | М | N   |
|-----------------------------|-------|---|---|------|--------------|---|---|---|---------------|---|---|---------------|---|-----|
|                             |       |   |   |      | DN15 - qp1.5 |   |   |   | DN25 - ap 3.5 |   |   | DN25 - ap 6.0 |   |     |
| Basis-Messung               | - 411 |   |   | - 11 |              | 1 |   |   |               |   |   | - 111         |   | 111 |
| ungestörter Einlauf<br>30xD |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| ASG<br>0xD                  |       | • |   |      |              |   |   |   |               |   |   |               |   |     |
| 0 ° Blende oben             |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 45° gedreht                 |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 90° gedreht                 |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 135° gedreht                |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 7xD                         |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 0 ° Blende oben             |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 45° gedreht                 |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 90 ° gedreht                |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 135° gedreht                |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 90° - Bogen                 |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 0xD                         |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 5xD                         |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| Raumkrümmer                 |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 0xD                         |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| 5xD                         |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| Abschluss Basis-<br>Messung |       |   |   |      |              |   |   |   |               |   |   |               |   |     |
| ungestörter Einlauf<br>30xD |       |   |   |      |              |   |   |   |               |   |   |               |   |     |





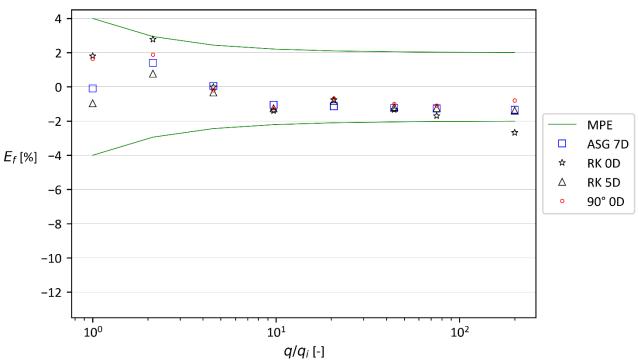



## Zähler A – ASG 7D und Störungen



 $E_f$  – Differenz zwischen der Messabweichung der Anzeige und der Eigenabweichung des Messgeräts (EN 1434-1:2022 3.10.1)

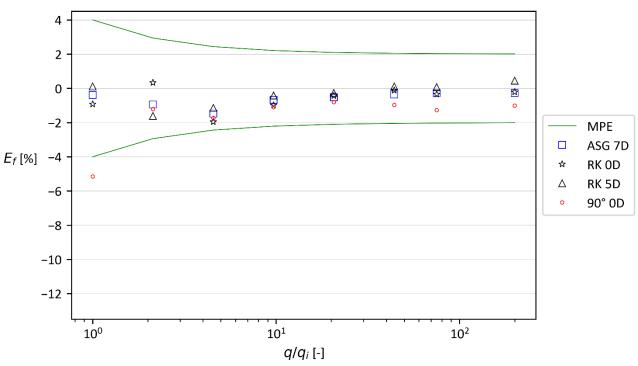



## Zähler N – ASG 7D und Störungen



 $E_f$  – Differenz zwischen der Messabweichung der Anzeige und der Eigenabweichung des Messgeräts (EN 1434-1:2022 3.10.1)

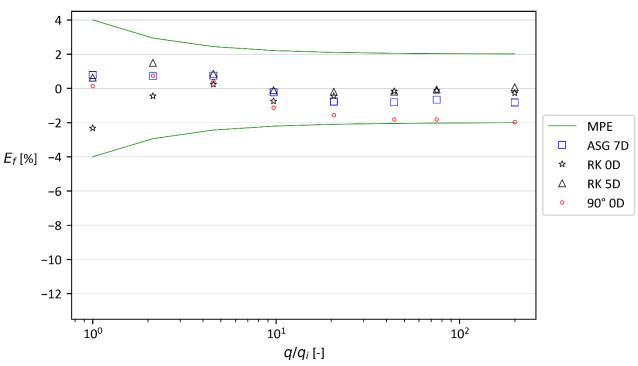



## Zähler J – ASG 7D und Störungen



 $E_f$  – Differenz zwischen der Messabweichung der Anzeige und der Eigenabweichung des Messgeräts (EN 1434-1:2022 3.10.1)




## Zähler C – ASG 7D und Störungen



 $E_f$  – Differenz zwischen der Messabweichung der Anzeige und der Eigenabweichung des Messgeräts (EN 1434-1:2022 3.10.1)



## Zähler D – ASG 7D und Störungen



 $E_f$  – Differenz zwischen der Messabweichung der Anzeige und der Eigenabweichung des Messgeräts (EN 1434-1:2022 3.10.1)



# Übersicht des Prüfprogramms

| Zähler                      | Α                           | В            | С             | D            | E            | F             | G             | Н             | ı             | J             | К             | L             | М             | N              |
|-----------------------------|-----------------------------|--------------|---------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
|                             | DN15 - qp 0.6               | DN15 - qp0.6 | DN15 - qp 1.5 | DN15 - qp1.5 | DN15 - qp1.5 | DN15 - qp 1.5 | DN15 - qp 1.5 | DN15 - qp 1.5 | DN25 - qp 3.5 | DN25 - qp 3.5 | DN25 - qp 3.5 | DN25 - qp 6.0 | DN25 - qp 6.0 | DN 25 – qp 6.0 |
| Basis-Messung               |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |
| ungestörter Einlauf<br>30xD |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |
| ASG                         | Durchflusstost nach EN 1424 |              |               |              |              |               |               |               |               |               |               |               |               |                |
| 7xD                         | Durchflusstest nach EN 1434 |              |               |              |              |               |               |               |               |               |               |               |               |                |
| 0 ° Blende oben             |                             |              |               |              |              |               |               |               |               |               |               |               |               | 5              |
| 45° gedreht                 |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |
| 90° gedreht                 |                             |              |               |              |              |               |               |               |               |               |               | 1             |               |                |
| 135° gedreht                |                             |              |               |              |              |               |               |               |               |               |               | 2             |               | 1              |
| 90° - Bogen                 |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |
| 0xD                         |                             |              | 1             |              |              |               |               |               |               |               |               | 6             |               | 7              |
| 5xD                         |                             |              |               |              |              |               |               |               |               |               |               | 1             |               | 2              |
| Raumkrümmer                 |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |
| 0xD                         |                             |              |               |              |              |               |               |               |               | 1             |               | 8             |               | 8              |
| 5xD                         |                             |              |               |              |              |               |               |               |               |               |               |               | 2             | 1              |
| Abschluss Basis-<br>Messung |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |
| ungestörter Einlauf<br>30xD |                             |              |               |              |              |               |               |               |               |               |               |               |               |                |

liegt innerhalb der MPE
liegt mit x Messpunkten außerhalb der MPE; kein Durchflusspunkt aus EN 1434
liegt mit x Messpunkten außerhalb der MPE; Durchflusspunkt aus EN 1434



## Zusammenfassung

4/14 der Zähler liegen nach Störungen außerhalb der MPE

→ **50% bestehen nicht** den Durchflusstest

→ **50% bestehen** den Durchflusstest



### Quellennachweise

- [1] EN 1434-4:2016. Heat meters Part 4: Pattern approval tests. Standard. 2016.
- [2] ISO 4064-2:2014. Water meters for cold potable water and hot water Part 2: Test methods. Standard. 2014.
- [3] OIML R 49-2:2013. Water meters for cold potable water and hot water Part 2: Test methods. Standard. 2013.
- [4] Wendt, G.: Gegenüberstellung des Profils von Swirl-Generator und Raumkrümmer. In: 3. EMATEM-Sommerschule, 2007.
- [5] Tawackolian, K.: Fluiddynamische Auswirkungen auf die Messabweichung von Ultraschall-Durchflussmessgeräten. Dissertation. TU Berlin, 2013.
- [6] Graner, S.; Hinz, D.F.; Breitsamter, C.: Downstream relaxation of velocity profiles in pipe-flow with swirl disturbances, Tech. Mess. 83. 2016.
- [7] Turiso, M.; Straka, M.; Rose, J.; Bombis, C.; Hinz, D.F.: The asymmetric swirl disturbance generator: Towards a realistic and reproducible standard. Flow Meas. Instr. 60. 2018.
- [8] van Hove, A.; Skov, L.N.; Hinz, D.F.: Reproducibility of Experiments With Swirling Flow: Numerical Prediction With Polynomial Chaos. J. Verfif. Valid. Uncert 3(1). 2018.
- [9] EN 1434-4:2020. Heat meters Part 4: Pattern approval tests. Standard. 2016.
- [10] M. Straka, T. Eichler, C. Koglin, and J. Rose. Similarity of the asymmetric swirl generator and a double bend in the near-field range. Flow Meas. and Instrum., 70:101647, 2019.

