NEWS

from the world of temperatur probes

EMATEM

2025-09-18 | Seeon

Daniel Bott Industry Manager Metering

AGENDA

PART 1

New findings and results from the working group on pockets in relation to the expiry of the tolerance regulation in Germany

PART 2

Selection of temperature probes for use in additional meters for energy accumulation

PART 1

New findings and results from the working group on pockets in relation to the expiry of the tolerance regulation in Germany

The toleration short pockets in Germany has a long history.

Even though it currently appears to be a purely German issue, the physics are the same everywhere.

For those who are not yet familiar with the topic, I will explain it again in a very brief summary.

THE SHORTEST SUMMARY

There were still

asymmetrical use.

pockets in

approximately 2 million

Therefore, discussions

were held once again to

determine whether the

pockets could continue

to be used and to find

new regulations.

2023

Investigations have shown that pockets with an installation length of < 60 mm have an impact on billing.

It was assumed that there were 2.5 million of these pockets in the field.

The installation of new heating systems or the modernization of existing ones should have minimized the number of old

However, this was not the case. There were still approximately 2 million pockets in use, most of which were installed asymmetrically.

Starting Point

2009

2015

pockets by 30 October 2016.

2016 Toleration period 2 (again 10 years)

2026

< 2006

Toleration period 1 (10 years)

2015

Following discussions about a further extension of the toleration, this was decided.

2024

Launch of the 'Pocket Working Group' moderated by the PTB in Berlin

continue tolerating 56 different pockets in symmetrical installations until 2016. New installations with these small pockets were no longer permitted.

Working groups decided to

What does the working group do?

Selection of a representative group of participants

The working group includes representatives from the PTB, FIGAWA, the German calibration authorities, as well as manufacturers of heat meters and their components.

Meetings will be held online approximately every three months.

Establishment of necessary definitions

Terms such as 'symmetry' and 'asymmetry' are used, but these are not defined (e.g. in EN1434).

Furthermore, this is not only relevant for existing immersion sleeves, but for all installation situations that differ between flow and return sensors.

The new definition was presented for the first time in my EMATEM lecture in 2024.

Determination of requirements for a metrological examination

What are the requirements for a test bench for the investigation?

What parameters and measurement range should be used to conduct an investigation?

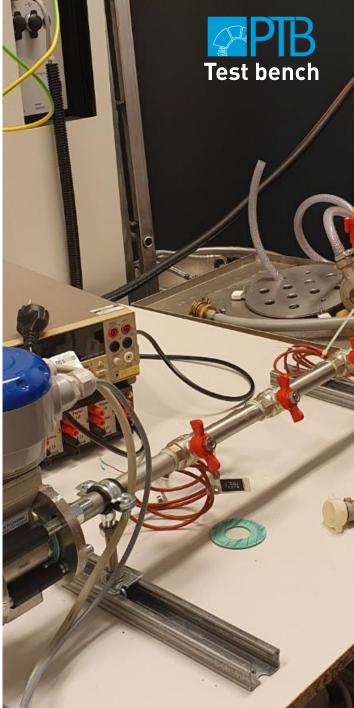
Various measurement series and comparative measurements are carried out for this purpose.

However, current procedures remain valid.

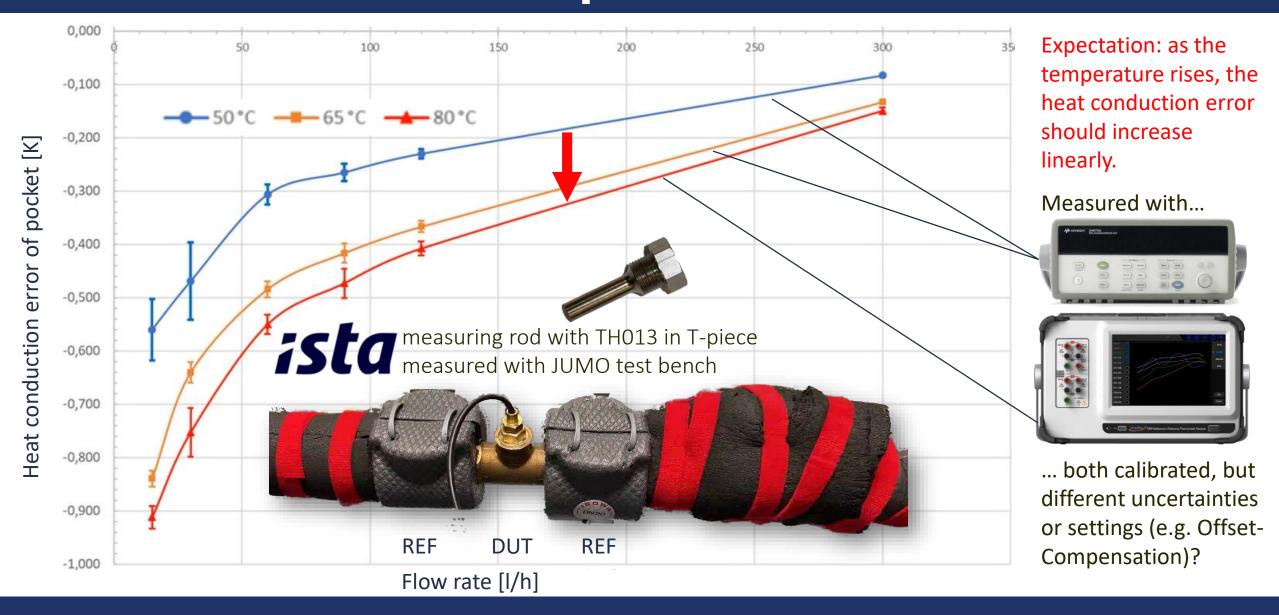
Find a solution for the existing pockets

A solution is being wanted without having another 10-year toleration period.

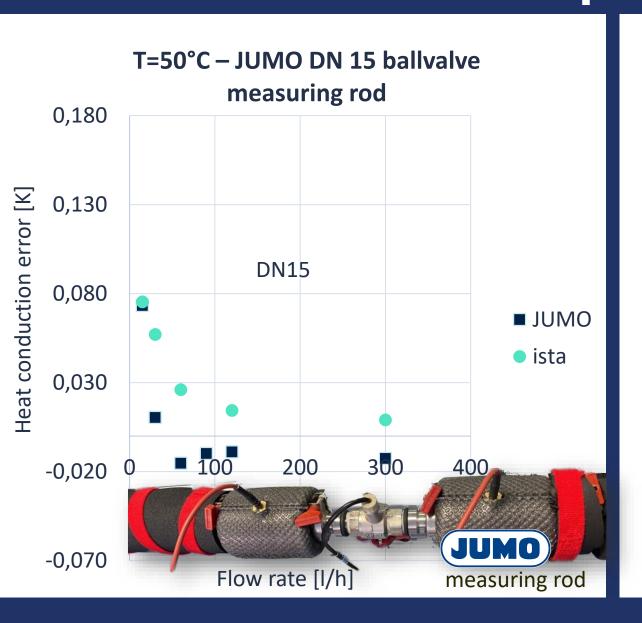
Since the existing short pockets are almost exclusively used asymmetrically, the old rule does not apply anyway.

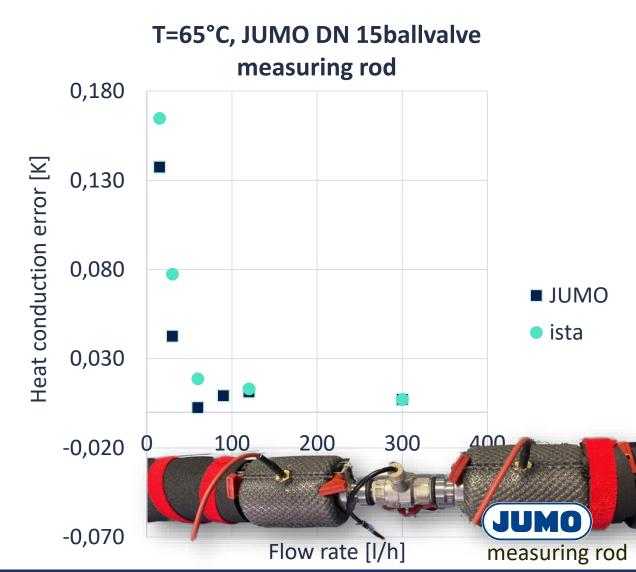

So the new regulation for Germany should continue to protect consumers from incorrect billing.

Revision of TRK 8 is in progress.

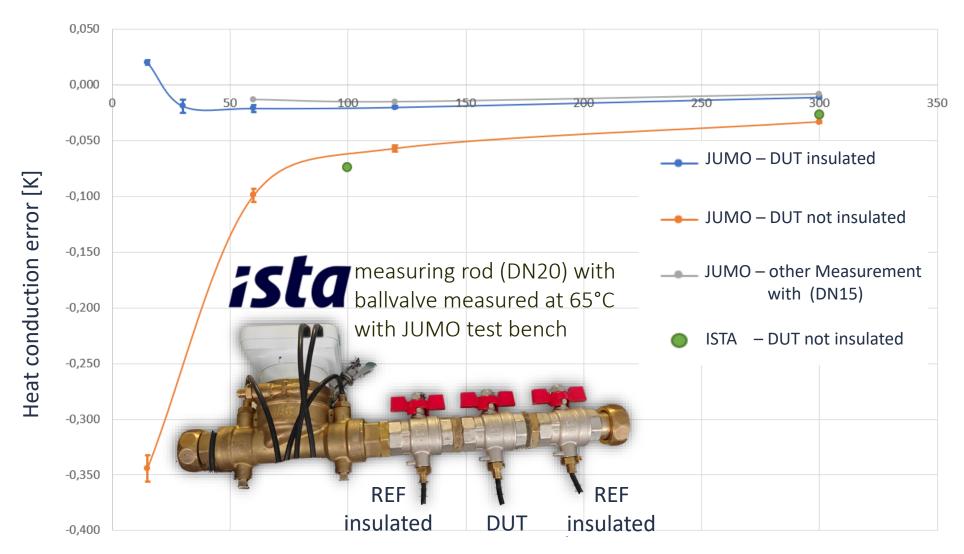

Ongoing comparative measurements

- Currently, we want to see how reproducible measurements are on different test benches.
- Various participants in the working group have announced their intention to take part in comparative measurements.
- This is not only done on existing test benches, but in some cases new ones are even being built for this purpose.





Latest results - Comparison wood and Isla



Latest results - Comparison wood and Isla

Latest results - Comparison wood and Isla

ISTA (Mr. Brücher)
visited JUMO in Fulda
and we carried out
together
measurements with
each measurement
equipment

Both measured with...

Both use the same type of measuring device, but different devices.

Flow rate [I/h]

Laboratory vs

measurement

VS Practical measurement

- Requirements for measurement technology and procedures usually significantly higher (e.g. 4-wire measurement for all probes)
- Often a worst-case scenario. Testing on borderline samples that do not exist in practice
- Comparability between different test benches significantly better

- Requirements for measurement technology and procedures are easy to implement (e.g. 2-wire measurement of the test object, as is also the case in practice)
- Testing on practical test specimens (e.g. real pockets from the field)
- When comparing different test benches, there are more influencing factors.

The working group must find a good balance here

PART 2

Selection of temperature probes for use in additional meters for energy accumulation

Customer pays only 0.14€/kWh, as the return temperature is < 50°C.

BONUS

The customer must pay 0.18€/kWh because the return temperature is > 50°C.

What does energy accumulation mean?

It is used for threshold-controlled recording of thermal energy in separate meters, e.g. to promote energy-efficient system behaviour within the framework of bonus-malus regulations.

- Absolute flow temperature
- Absolute return temperature
- Temperature difference between flow and return $(\Delta \theta)$

EN 1434-1:2022

5.10.5.2 Required accuracy when the measured temperature is used for additional energy accumulations

1,0 K	for temperature measurement in case of a complete meter (calculator with single
	temperature sensor); up to 100 °C

for temperature measurement in case of a combined meter (single temperature sensor); up to $100\,^{\circ}\text{C}$

NOTE In applications of smart metering, one or both single sensors of the pair are used as additional single sensor. In case of Platinum (Pt) sensors, according to EN 60751:2008, at least class B with 4 wire connections is recommended.

9.2.2.2 Temperature sensor pair

$$E_t = \pm \left(0.5 + 3 \frac{\Delta \Theta_{min}}{\Delta \Theta}\right) \tag{4}$$

where

 E_t is the error, which relates the indicated value to the conventional true value of the relationship between temperature sensor pair output and temperature difference.

The relationship between temperature and resistance of each single sensor of a pair shall not differ from the values of the equation given in EN 60751:2008 (using the standard values of the constants A, B and C) by more than an amount equivalent to 2 K.

For thermal energy meters and cooling meters with tariff depending on absolute temperature the tolerance of each single sensor should fulfil class B of EN 60751:2008.

Normative basis for this

EN 1434-5:2022

For thermal engery meter with exchangeable probes

6.3.3 Single temperature sensor for smart metering applications

The compliance with the permissible error of the temperature sensor of \pm 0,7 K compared to the performance curve according to EN 60751:2008, including the signal cables thereof, shall be tested for each temperature sensor at three typical temperature points for field applications (e.g. 10 °C; 30 °C; 50 °C).

For combined thermal engery meter (compact meter)

6.5.2 Calculator with single temperature sensor for smart metering applications

The compliance with the permissible error on temperature indication of the inlet and outlet temperatures compared to the correct value of the measured temperature of \pm 1,0 K shall be tested. The test shall be examined in accordance with 6.3.3 and 6.4.

Normative basis for this

In Germany, the PTB requirement 'PTB-A 7.05' has also been in force since July 2024.

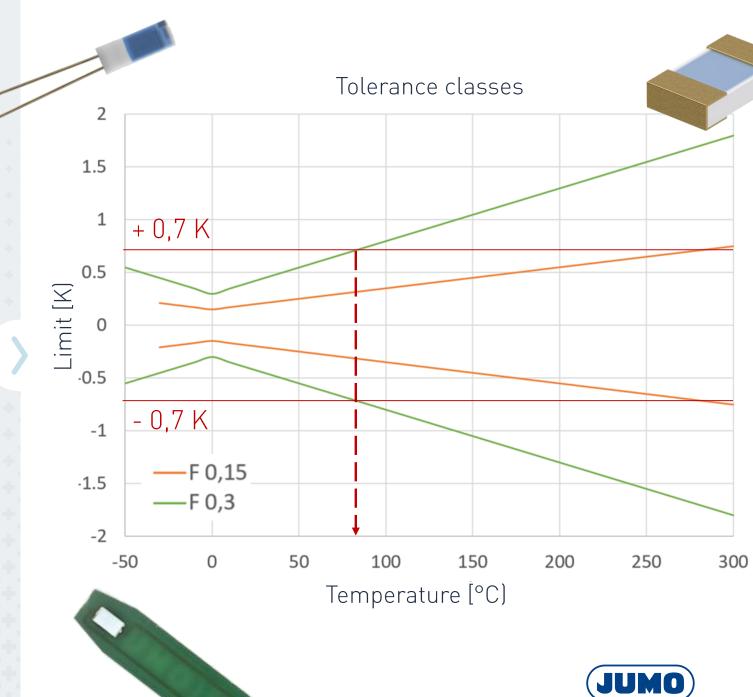
Type examination of the meter also out of the PTB-A 7.05

Checking that the respective counter is activated correctly depending on the signal

Compliance with the error limits for the absolute flow and return temperatures must therefore be checked by the meter manufacturer.

Temperature difference

Test with two-sided approach in 0.25K increments at a minimum of Δθmin (+ 5K) and Δθmax (- 5K)


Absolute flow- or return temperature

Test with two-sided approach in 0.25K increments with at least 3 threshold values evenly distributed across the temperature range.

Requirements for the sensor tolerance class

- According to PTB-A 7.05 and EN1434, at least sensor class F0.3 (formerly known as class B) should be used
- A sensor (not probe) in tolerance class F0.3 with a four-wire connection maintains the error limit for the absolute flow and return temperature of 0.7 K only up to 80 °C.
- JUMO recommendation: Sensor class F0.15 (compliance with the error limit of 0.7 K to 270 °C)

Caution with 2-wire connection

Influence with PT100 Sensor

41,075K

Compliance with the error limit of 0.7 K not possible

Influence with PT500 Sensor

40,215K

Compliance with the error limit of 0.7 K using sensor class F0.3 only up to 37 °C

Influence with PT1000 Sensor

40,107%

Compliance with the error limit of 0.7 K using sensor class F0.3 only up to 58 °C

According to PTB-A 7.05 and EN1434, at least sensor class F0.3 should be used

BUT: Increase in resistance with two-wire connection

Example here: 3 m cable with 0.25 mm² cross-section \rightarrow 420 m Ω

Caution with temperature probes with PCB Board

SURVEY: What do you think the loop resistance marked in red here is (in $m\Omega$)?

All resistances along the measuring chain must be taken into account. This includes loop resistance of the conductor track on the circuit board.

To minimize heat conduction error, the conductor track is very thin. This results in higher resistance. \rightarrow ~200 m Ω

Only when you know all the resistances of the measuring chain and the temperature operating range can you select the correct tolerance class for the sensor.

We look forward to your questions!

Global Industry Manager Metering

+49 661 6003 9303 Daniel.Bott@jumo.net

Tobias Firle

Global Strategic Product Manager

+49 661 6003 9396 Tobias.Firle@jumo.net

Simon Münker

Global Technical Product Manager

+49 661 6003 3654 Simon.Muenker@jumo.net

